Marin Gestalt review
Oct 28, 2023Railway Bearing Market Size, Trends and Top Manufacturers 2023 to 2030
Sep 11, 2023The latest technologies for agriculture and off
Jun 23, 2023If you didn’t know who James Harden was by now, you simply weren’t paying attention
Aug 15, 2023Rare book in Libraries’ collection potentially linked to Richard Cromwell
Jul 07, 2023Adding Wire Races Improves 3D
Like a lot of power transmission components, bearings have become far easier to source than they once were. It used to be hard to find exactly what you need, but now quality bearings are just a few clicks away. They’re not always cheap though, especially when you get to the larger sizes, so knowing how to print your own bearings can be a handy skill.
Of course, 3D-printed bearings aren't going to work in every application, but [Eros Nicolau] has a plan for that. Rather than risk damage from frictional heating by running plastic or metal balls in a plastic race, he uses wire rings as wear surfaces. The first video below shows an early version of the bearing, where a pair of steel wire rings lines the 3D-printed inner and outer races. These worked OK, but suffered from occasional sticky spots and were a bit on the noisy side.
The second video shows version two, which uses the same wire-ring race arrangement but adds a printed ball cage to restrain the balls. This keeps things quieter and eliminates binding, making the bearing run smoother. [Eros] also added a bit of lube to the bearing, in the form of liquid PTFE, better known as Teflon. It certainly seemed to smooth things out. We’d imagine PTFE would be more compatible with most printed plastics than, say, petroleum-based greases, but we’d be keen to see how the bearings hold up in the long term.
Maybe you recall seeing big 3D-printed bearings around here before? You’d be right. And we’ve got you covered if you need to learn more about how bearings work — or lubricants, for that matter.
Thanks to [Nick Dunham] for the tip.